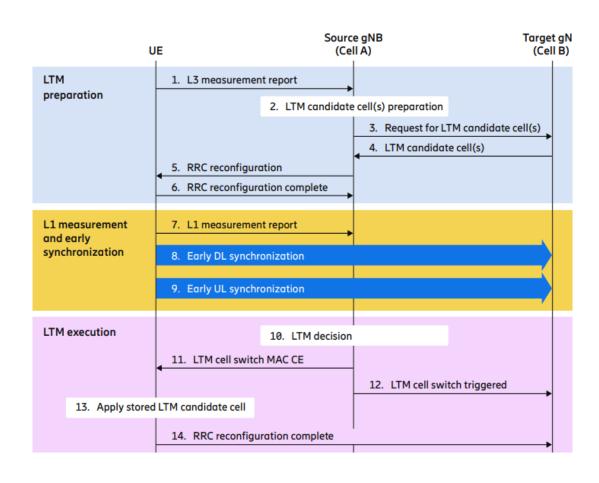


Introduction - The Need for Speed


- **Challenge:** New and emerging extended reality (XR) and time-critical communication (TCC) use cases require a significant reduction in handover interruption time. This also benefits delay-sensitive smartphone apps.
- Solution: Layer 1/Layer 2 (L1/L2) Triggered Mobility (LTM) in 5G Advanced.
- Speeds up the handover procedure.
- Reduces interruption in data transmission and reception.
- **LTM Mechanism:** Pre-configures User Equipment (UE) with a handover command for an LTM candidate cell and triggers the switch with lower-layer signaling.
- Advantage: Allows early downlink (DL) and uplink (UL) synchronization before the cell switch, speeding up target cell access.
- **Future:** LTM is being implemented in 5G Advanced networks and UE chipsets and is expected to be foundational for 6G mobility

Handover in Mobile Systems - An Overview

- •Purpose of Handover: Ensure UE is always connected to the cell with the best signal quality.
- •Goal: Handover from source to target cell as quickly as possible with minimal interruption.
- •Current 5G (L3 Handover):
- •Source base station (gNB) sends a handover command (RRC message Layer 3) to UE.
- •Interruption: **50-90ms** in a well-tuned network.
- •5G Beam Management:
- •Handles UE movement across different beams in the same cell, especially in higher frequency bands.
- Interruption: Few milliseconds due to lower-layer signaling.
- •Limitations of L3 Handover for TCC: Interruption is too large for TCC and XR.
- Previous Attempts & Limitations:
- •Dual Active Protocol Stack (DAPS): Difficult to implement, significant limitations.
- •Conditional Handover (CHO): Reduces handover failure risk by providing configurations for potential target cells.
- •Inter-cell Beam Management: Short interruption but cumbersome over larger areas as it operates without RRC reconfigurations.
- •LTM's Advantage: Extends inter-cell beam management to handle RRC reconfigurations, combining multiple-candidate configurations (like CHO) with efficient signaling.

L1/L2 Triggered Mobility - How it Works

- •Core Principle: Network triggers handover via L2 signaling, relying on L1 measurements from the UE.
- •Benefits: Faster handover, pre-synchronization with LTM candidate cell (target cell), reduced execution time, signaling overhead, and connectivity interruption.
- •LTM Procedure (Key Phases Illustrated in Figure 2):
- 1.LTM Preparation (Steps 1-6):
 - •UE receives configurations for one or more LTM candidate cells.

2.L1 Measurement and Early Synchronization (Steps 7-9):

- •UE uses configurations for L1 measurement and presynchronizes with candidate cells.
- •Early DL Synchronization: UE determines DL receive timing of candidate cells.
- •Early UL Synchronization: Network determines Timing Advance (TA) of candidate cells.

3.LTM Execution (Steps 10-14):

•UE performs the LTM cell switch to a selected candidate cell.